Filtrations and Finite Model Property of S5

Logic Seminar Fall 2021

University of Hawai'i at Manoa

09/28/2021

Logic Seminar Fall 2021 Filtrations and Finite Model Property of S5

• Modal logic is the logic of reasoning which involves the expressions "It is necessary that ..." and "It is possible that ...".

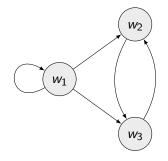
• Modal logic is the logic of necessities and possibilities.

Let φ be a sentence.

- $\Box \varphi$ denotes the formula "*It is necessary that* φ ".
- $\Diamond \varphi$ denotes the formula "It is possible that φ ".

- Consider a nonempty set *W*, which we'll call a set of possible worlds, or a set of states.
- Let *R* be a binary relation on *W*, which we'll call the accessibility relation.
- For any two possible worlds α, β ∈ W, we say β is accessible from α iff αRβ.
- Pictorially, we denote $\alpha R\beta$ by drawing an arrow from α to β .

Kripke Frames - Example.



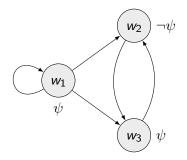
In this frame, w_1 has access to all the other possible worlds including itself, whereas w_2 has access to w_3 only.

- A standard model is a tuple *M* = (*W*, *R*, *P*), where *W* is a nonempty set of worlds, *R* is an accessibility relation on *W*, and *P* : *S* → 2^{*W*} where *S* is the set of all propositional letters.
- The function *P* is an evaluation function. It assigns sets of possible worlds to atomic sentences.
- Henceforth we'll call the standard models just models.

Semantic Conditions for the modalities \Box and \Diamond .

- Consider a model *M* = (*W*, *R*, *P*) and a possible world α ∈ *W*. We have the following semantic conditions for the modalities □ and ◊. Let φ be a sentence.
- We use the notation $\mathcal{M}, \alpha \models \varphi$ to mean that φ is satisfied by the model \mathcal{M} at the possible world α .
- $\mathcal{M}, \alpha \models \Box \varphi$ iff for all $\beta \in W$ with $\alpha R \beta$ we have $\mathcal{M}, \beta \models \varphi$.
- $\mathcal{M}, \alpha \models \Diamond \varphi$ iff there exists $\beta \in W$ so that $\alpha R\beta$ and $\mathcal{M}, \beta \models \varphi$.
- The semantic conditions for the logical connectives ¬ and ∨ are as usual.

Standard Models - Example.



- $\mathcal{M}, w_1 \nvDash \Box \psi$ because $w_1 R w_2$ and $\mathcal{M}, w_2 \nvDash \psi$.
- M, w₂ ⊨ □ψ as the only world that can be accessed from w₂ is w₃ and we have M, w₃ ⊨ ψ.
- $\mathcal{M}, w_1 \models \Diamond \psi$ because R is reflexive at w_1 and ψ is true at w_1 .
- M, w₃ ⊭ ◊ψ as ψ is false at w₂ and w₂ is the only possible world which is accessible from w₃.

The Axiom Schema K.

• K.
$$\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$$
.

Theorem

Suppose we have the detachment rule $p \rightarrow q, p \vdash q$ as a rule of inference. Then K is valid.

Proof.

Let $\mathcal{M} = (W, R, P)$ be a model and let $w \in W$. Suppose $\mathcal{M}, w \models \Box (p \rightarrow q)$. Assume $\mathcal{M}, w \models \Box p$. Let $x \in W$ be arbitrary and suppose wRx. Since $\mathcal{M}, w \models \Box (p \rightarrow q)$ and wRx, we have $\mathcal{M}, x \models p \rightarrow q$. Since $\mathcal{M}, w \models \Box p$ and wRx, we have $\mathcal{M}, x \models p$. Hence $\mathcal{M}, x \models q$ by detachment. Now since $x \in W$ was arbitrary with wRx, we have $\mathcal{M}, w \models \Box q$. So we conclude that K is valid in our standard models. \Box A set L of modal formulas such that L contains

- All propositional tautologies,
- All instances of the schema $Df \Diamond$. $\Diamond p \leftrightarrow \neg \Box \neg p$.

• All instances of the schema K. $\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q),$ and is closed under

- Detachment : p
 ightarrow q, p dash q,
- Necessitation Rule : If $\vdash A$, then $\vdash \Box A$

is called a Normal Modal Logic.

• The smallest normal modal logic is called K.

The system S5 is the smallest modal logic which contains the following axiom schemas

- T. $\Box p \rightarrow p$.
- 5. $\Diamond p \rightarrow \Box \Diamond p$,

and closed under the rule $\psi_1, \ldots, \psi_n \vdash \psi$.

T and 5 are not valid in the class of all standard models.

Theorem

The schemas T. $\Box p \rightarrow p$, and 5. $\Diamond p \rightarrow \Box \Diamond p$ are not valid in the class of all standard models.

Proof.

We'll prove the invalidity of T first. Take $\mathcal{M} = (W, R, P)$, where W = w, $R = \emptyset$, and $P(S) = \{\emptyset\}$. So in \mathcal{M} , there's only one possible world, it's related to nothing, and no atomic proposition is true at w. Consider the formula $\Box \mathbb{P}_0 \to \mathbb{P}_0$. Now $\mathcal{M}, w \models \Box \mathbb{P}_0$ as $R = \emptyset$. But $\mathcal{M}, w \nvDash \mathbb{P}_0$ as no world is accessible from w. Hence $\mathcal{M}, w \nvDash \Box \mathbb{P}_0 \to \Diamond \mathbb{P}_0$ proving the invalidity of T.

To prove that 5 is invalid, consider the model $\mathcal{N} = (W', R', P')$, where $W' = \{w_1, w_2, w_3\}$, $R' = \{(w_1, w_2), (w_1, w_3)\}$, and $P'(\mathbb{P}_n) = \{w_2\}$ for all $n \in \mathbb{N}$. Then $\mathcal{N}, w_1 \models \Diamond \mathbb{P}_0$ while $\mathcal{N}, w_1 \nvDash \Box \Diamond \mathbb{P}_0$. Consider a frame (W, R). R is said to be

- Symmetric iff uRv implies vRu for all $u, v \in W$.
- <u>Transitive</u> iff uRv and vRw imply uRw for all $u, v, w \in W$.
- Euclidean iff uRv and uRw imply vRw for all $u, v, w \in W$.
- An equivalence relation iff R is Reflexive, Symmetric, and Transitive.

Lemma

If R is reflexive and Euclidean, then R is an equivalence relation on W.

Theorem

- The schema T. $\Box p \rightarrow p$ is valid if R is reflexive.
- The schema 5. $\Diamond p \rightarrow \Box \Diamond p$ is valid if R is Euclidean.

- A model *M* is based on a frame *F* = (*W*, *R*) iff
 M = (*W*, *R*, *P*) for some valuation *P*.
- For a frame F and a formula ψ, we say ψ is valid in F, denoted by F ⊨ ψ, iff M ⊨ ψ for all models M based on F.
- For a class *F* of frames, ψ is valid in *F*, denoted by *F* ⊨ ψ, iff *F* ⊨ ψ for all *F* ∈ *F*.

Lemma

- If T. □q → q is valid in a frame F = (W, R), then R is relexive.
- **2** If 5. $\Diamond q \rightarrow \Box \Diamond q$ is valid in F = (W, R), then R is Euclidean.

Proof:

Suppose T is valid in F = (R, W). Let w ∈ W. Our goal is to show that wRw. The idea is to build a model based on F so that we have wRw. So let u ∈ P(q) iff wRu. Let wRu. Then M, u ⊨ q. So M, w ⊨ □p. Now, since M is a model based on F and T is valid in F, T is valid in M as well. So M, w ⊨ p. But this means wRw, done!

For 2, suppose F = (W, R) and R is not Euclidean. Then ∃w, u, v (wRu ∧ wRv ∧ ¬uRv). We'll show that there is a model based on F so that 5 is not valid in it. Let z ∈ P(q) iff ¬uRz. Now argue as in 1.

Theorem

The Reflexive + Euclidean frames characterize the system S5.

Corollary

The frames whose accessibility relation is an equivalence relation characterize the system S5.

Definition

Consider a frame F = (W, R). The relation R is said to be universal iff $\forall u \forall v \ u Rv$.

Some Observations :

- Universal relations are equivalence relations.
- An equivalence relation is a universal relation <u>inside</u> each equivalence class.

Theorem

A formula ψ is valid in all frames F = (W, R), where R is an equivalence relation iff ψ is valid in all frames F = (W, R), where R is a universal relation.

Proof.

Since universal relations are equivalence relations the forward implication is trivial. We'll prove the reverse implication. Suppose F = (W, R) is a equivalence frame and ψ is false at some $w \in W$ in a model $\mathcal{M} = (W, R, P)$ based on F. So $\mathcal{M}, w \nvDash \psi$. We'll define a new model as follows.

- Let W' = [w], the equivalence class of w.
- Let $R' = R \cap (W' \times W')$.
- Let $P'(q) = P(q) \cap W'$.

Proof Continued.

Proof.

Let $w' \in W'$. We claim $\mathcal{M}', w' \models \psi$ iff $\mathcal{M}, w' \models \psi$. We'll use induction. First suppose $\psi = q$, where q is an atom. Then $\mathcal{M}', w' \models q \iff w' \in P'(q) \iff w' \in P(q) \cap W \iff w' \in P(q)$ and $w \in W \iff \mathcal{M}, w' \models q$.

Next suppose $\psi \equiv \Box \theta$ and the result is true for θ . Then $\mathcal{M}', w' \models \Box \theta \iff \forall v' \in W'(w'R'v' \implies \mathcal{M}', v' \models \theta) \iff$ $\forall v \in W(w'Rv \implies M, v' \models \theta) \iff \mathcal{M}, w' \models \Box \theta$. We used the IH for the second biconditional. We can prove the rest of the cases similarly.

So, $\mathcal{M}', w' \nvDash \psi$, and \mathcal{M}' is a model based on (W', R') with R' universal. So by contrapositive, if ψ is valid in all frames F = (W, R), where R is universal, then ψ is valid in all frames F = (W, R), where R is an equivalence relation.

- Fix a set of sentences Γ closed under subsentences.
- Let $\mathcal{M} = (W, R, P)$ be a model.
- Define a relation \equiv on W by declaring that for any $\alpha, \beta \in W, \ \alpha \equiv \beta$ iff for every $\varphi \in \Gamma$,

$$\mathcal{M}, \alpha \models \varphi \iff \mathcal{M}, \beta \models \varphi.$$

• Then \equiv is an equivalence relation on W.

We say $\mathcal{M}^* = (W^*, R^*, P^*)$ is a filtration of \mathcal{M} through Γ if \mathcal{M}^* has the following properties.

•
$$W^* = [W] = \{ [\alpha] : \alpha \in W \}.$$

- $\textbf{2} \ \text{For every} \ \alpha,\beta \in W \text{,}$
 - If $\alpha R\beta$ then $[\alpha]R^*[\beta]$,
 - If $[\alpha]R^*[\beta]$, then for every sentence $\Box \varphi \in \Gamma$, if $\mathcal{M}, \alpha \models \Box \varphi$ then $\mathcal{M}, \beta \models \varphi$,
 - If $[\alpha]R^*[\beta]$, then for every sentence $\Diamond \varphi \in \Gamma$, if $\mathcal{M}, \beta \models \varphi$ then $\mathcal{M}, \alpha \models \Diamond \varphi$.

$$P^*(\mathbb{P}_n) = \{ [\alpha] : \alpha \in P_n \}.$$

Some Comments on the Definition of Filtrations.

- $P^*(\mathbb{P}_n) = \{ [\alpha] : \alpha \in P_n \}.$
- If $\alpha \in P_n$, then $[\alpha] \in P^*(\mathbb{P}_n)$.
- However, $[\alpha] \in P^*(\mathbb{P}_n)$ doesn't guarantee that $\alpha \in P_n$. All we can conclude is that $\alpha \equiv \beta$ for some $\beta \in W$ with $\beta \in P_n$.
- If $\mathbb{P}_n \in \Gamma$, then we can conclude that $\alpha \in P_n$, given $[\alpha] \in P^*(\mathbb{P}_n)$.
- So whenever $\mathbb{P}_n \in \Gamma$, we'll write P_n^* for $P^*(\mathbb{P}_n)$.

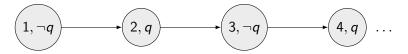
• If $\alpha R\beta$ then $[\alpha]R^*[\beta]$,

- If $[\alpha]R^*[\beta]$, then for every sentence $\Box \varphi \in \Gamma$, if $\mathcal{M}, \alpha \models \Box \varphi$ then $\mathcal{M}, \beta \models \varphi$,
- If [α]R*[β], then for every sentence ◊φ ∈ Γ, if M, β ⊨ φ then M, α ⊨ ◊φ.
- R* is consistent with R: R* behaves in such a way that, for modal formulas in Γ, whose truth of course depends on the behavior of R, nothing can go wrong by any mischief that R* may get into.

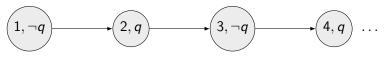
- Consider $\Gamma = \{q, \Box q, \Box q \rightarrow q\}$ the set of all subformulas of $\Box q \rightarrow q$, where q is an atomic formula.
- Let $W = \mathbb{Z}^+$.
- Define *R* by nRm iff m = n + 1.

•
$$P(q) = 2\mathbb{Z}^+$$
.

So we have the following infinite model \mathcal{M} .



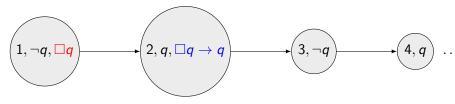
Example of a Filtration - Figuring out W^* .



Observe:

- $\mathcal{M}, n \models q$ iff *n* is even.
- $\mathcal{M}, n \models \Box q$ iff *n* is odd.
- $\therefore \mathcal{M}, n \models (\Box q \rightarrow q)$ iff *n* is even.
- Hence $W^* = \{[1], [2]\}$, where [1] has all and only odd numbers, and [2] has all and only even numbers.

Example of a Filtration - Figuring out P^* .



- $W^* = \{[1], [2]\}.$
- Recall $P^*(q) = \{ [n] : q \in P(n) \}.$
- Since $\mathcal{M}, 2 \models q$ we have $[2] \in P^*(q)$.
- Since M, 1 ⊭ q, we have [1] ∉ P*(q), because otherwise we'd have M, 1 ⊨ q and hence M, 1 ⊨ (□q → q) which is not true.

•
$$\therefore P^*(q) = \{[2]\}.$$

Example of a Filtration - Figuring out R^* .

- Since 1*R*2, [1]*R**[2].
- Since 2R3 and [3] = [1], $[2]R^*[1]$.
- So $\{([1], [2]), ([2], [1])\} \subseteq R^*$.
- Recall: If $[\alpha]R^*[\beta]$, then for every sentence $\Box \varphi \in \Gamma$, if $\mathcal{M}, \alpha \models \Box \varphi$ then $\mathcal{M}, \beta \models \varphi$.
- We claim that $([1], [1]) \notin R^*$, because $\mathcal{M}, 1 \models \Box q$ and $[1]R^*[1]$ would force $\mathcal{M}, 1 \models q$, which is not true.
- Finally note that ([2], [2]) ∈ R* or ([2], [2]) ∉ R* don't violate our definitions.
- So either $R^* = \{([1], [2]), ([2], [2])\}$ or $R^*\{([1], [2]), ([2], [1]), ([2], [2])\}.$
- Thus we have two filtrations of ${\mathcal M}$ over $\Gamma.$

Example of a filtration - Summing up.

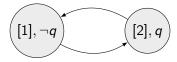


Figure 1: The filtration M_1^* with $R^* = \{([1], [2]), ([2], [1])\}$

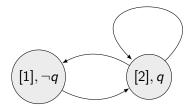


Figure 2: The filtration \mathcal{M}_2^* with $R^* = \{([1], [2]), ([2], [1]), ([2], [2])\}$

- Note that we started with an infinite model and its filtrations over Γ = {q, □q, □q → q} were finite.
- And we found all possible filtrations. So we get the following question.
- So one can ask the question : Are all filtrations finite ?

Theorem

Suppose Γ is a finite set of sentences closed under subsentences. Then any filtration \mathcal{M}^* of a model \mathcal{M} through Γ is finite.

Proof.

We'll exhibit an injection from W^* to 2^{Γ} . Recall $W^* = \{[w] : w \in W\}$. Suppose $u, v \in [w]$. Then for all $\varphi \in \Gamma$, $\mathcal{M}, u \models \varphi$ iff $\mathcal{M}, v \models \varphi$. So for all $\varphi \in \Gamma$, either φ is true at both u and v, or φ is false at both u and v. Hence each $[w] \in W^*$ corresponds to some $\Lambda_w \subseteq \Gamma$. Next we claim this correspondence is injective. Assume $[x] \neq [y]$. Let $s \in [x]$, $t \in [y]$, and $\varphi \in \Gamma$ be so that $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, t \nvDash \varphi$, or $\mathcal{M}, s \nvDash \varphi$ and $\mathcal{M}, t \models \varphi$. But this means $\varphi \in \Gamma$, and $\varphi \in \Lambda_x$ and $\varphi \notin \Lambda_y$, or $\varphi \notin \Lambda_x$ and $\varphi \in \Lambda_y$, as claimed. Therefore $[w] \mapsto \Lambda_w$ is an injection from W^* to 2^{Γ} . Since Γ is finite, so is 2^{Γ} , and hence W^* is finite.

Definition

A system Σ of modal logic has the Finite Model Property if every non-theorem of Σ is false in some <u>finite</u> model for Σ .

Lemma

Suppose \mathcal{M}^* is a filtration of \mathcal{M} through Γ . Then for all $\varphi \in \Gamma$ and $w \in W$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}^*, [w] \models \varphi$.

Proof.

Let $\varphi \in \Gamma$. We'll use an induction on the complexity of φ , and we'll look at the cases where φ is atomic and $\varphi = \Box \psi$ only, other cases are left as an exercise(?). Say $\varphi = q$, where q is an atom. Then $\mathcal{M}, w \models q \implies w \in P(q) \implies [w] \in P^*(q) \implies \mathcal{M}^*, [w] \models q$. On the other hand, $\mathcal{M}^*, [w] \models q \implies [w] \in P^*(q) \implies \exists s \in$ $P(q) w \equiv s \implies \mathcal{M}, s \models q \implies \mathcal{M}, w \models q$ as $q = \varphi \in \Gamma$. \Box

Proof.

Now suppose $\varphi = \Box \psi$ and the result is true for ψ . Assume $\mathcal{M}, w \models \Box \psi$. Further assume $[w]R^*[v]$. Then $\mathcal{M}, v \models \psi$ as $\psi \in \Gamma$ since Γ is closed under subformulas. So $\mathcal{M}^*, [v] \models \psi$. Since v was arbitrary, $\mathcal{M}^*, [w] \models \Box \psi$. Finally assume $\mathcal{M}^*, [w] \models \Box \psi$ and wRv. Then $[w]R^*[v]$. So $\mathcal{M}^*, [v] \models \psi$. Therefore $\mathcal{M}, v \models \psi$ by IH. Hence $\mathcal{M}, w \models \Box \psi$ as v was arbitrary. \Box

Let \mathcal{U} be the class of all universal models, and \mathcal{U}_{f} be the class of all finite universal models. Then any formula ψ is valid in \mathcal{U} iff ψ is valid in \mathcal{U}_{f} .

Proof.

The forward direction is trivial as $\mathcal{U}_f \subseteq \mathcal{U}$. Suppose ψ is false at a world w in some $\mathcal{M} = (W, R, P) \in \mathcal{U}$. Let

 $\Gamma = \{\phi : \phi \text{ is a subformula of } \psi\}.$

Let \mathcal{M}^* be the filtration of \mathcal{M} through Γ . Since $\mathcal{M}, w \nvDash \psi$ we have $\mathcal{M}^*, [w] \nvDash \psi$ by the previous lemma. We'll confirm $\mathcal{M}^* \in \mathcal{U}_f$. It's finite because Γ is finite. It's universal because R is universal, and for all worlds $u, v \in W$ uRv implies $[u]R^*[v]$ by definition of R^* .

Consider a system of modal logic $\Sigma,$ and Γ a set of sentences.

Definition

- $\underline{\Gamma \text{ is } \Sigma\text{-consistent}}$:- $Con_{\Sigma}\Gamma$ iff $\Gamma \nvDash_{\Sigma} \perp$.
- Γ is maximally Σ -consistent :- $Max_{\Sigma}\Gamma$ iff $Con_{\Sigma}\Gamma$ and for all φ if $Con_{\Sigma}(\Gamma \cup \{\varphi\})$ then $\varphi \in \Gamma$.

•
$$|\varphi|_{\Sigma} = \{ Max_{\Sigma}\Gamma : \varphi \in \Gamma \}.$$

- $\Box \Gamma = \{\Box \varphi : \varphi \in \Gamma\}.$
- $\Diamond \Gamma = \{ \Diamond \varphi : \varphi \in \Gamma \}.$
- $\Box^{-1}\Gamma = \{\varphi : \Box \varphi \in \Gamma\}.$
- $\bullet \ \Diamond^{-1} \mathsf{\Gamma} = \{ \varphi : \Diamond \varphi \in \mathsf{\Gamma} \}.$

Let Σ be a normal system. If $\Gamma \vdash_{\Sigma} \varphi$ then $\Box \Gamma \vdash_{\Sigma} \Box \varphi$.

Proof.

Suppose $\Gamma \vdash_{\Sigma} \varphi$. Then there are $\psi_1, \ldots, \psi_n \in \Gamma$ such that $\Sigma \vdash \psi_1 \to (\psi_2 \to \cdots (\psi_n \to \varphi) \cdots)$. Since Σ is normal, by RK^a we have $\Sigma \vdash \Box \psi_1 \to (\Box \psi_2 \to \cdots (\Box \psi_n \to \Box \varphi) \cdots)$. Since $\Box \psi_i$ are in $\Box \Gamma$ we have $\Box \Gamma \vdash_{\Sigma} \Box \varphi$.

^{*a}</sup><i>RK* is the rule of inference $\frac{(A_1 \land \dots \land A_n) \rightarrow A}{(\Box A_1 \land \dots \land \Box A_n) \rightarrow \Box A}$. This can be proved using the necessitation rule and induction on *n*.</sup>

Suppose $Max_{\Sigma}\Gamma$. Then $\Box \varphi \in \Gamma$ iff for every Λ with $Max_{\Sigma}\Lambda$ and $\Box^{-1}\Gamma \subseteq \Lambda$ we have $\varphi \in \Lambda$.

Proof.

If $\Box \varphi \in \Gamma$ and $\Box^{-1}\Gamma \subseteq \Gamma$, then $\varphi \in \Box^{-1}\Gamma \subseteq \Lambda$. For the other direction suppose $\Box \varphi \notin \Gamma$. Since $Max_{\Sigma}\Gamma$, $\Gamma \vdash_{\Sigma} \psi$ implies $\psi \in \Gamma$. So $\Gamma \nvDash_{\Sigma} \Box \varphi$. Therefore $\Box^{-1}\Gamma \nvDash_{\Sigma} \varphi$. So $Con_{\Sigma}(\Box^{-1}\Gamma \cup \{\neg\varphi\})$. Now if we can extend $\Box^{-1}\Gamma \cup \{\neg\varphi\}$ to a maximal Σ -consistent set then we are done. Lindenbaum's lemma takes care of this, and we'll use it without proof. So get maximal Σ -consistent Λ with $\Box^{-1}\Gamma \cup \{\neg\varphi\} \subseteq \Lambda$. Then $\varphi \notin \Lambda$ because otherwise consistency will be violated.

For good measure we'll include the statement of the Lindenbaum Lemma.

Theorem

If $Con_{\Sigma}\Gamma$, then there is a Λ with $Max_{\Sigma}\Lambda$ extending Γ .

Let Σ be a system of modal logic.

Definition

 $\mathcal{M}^{\Sigma}=(\mathit{W}^{\Sigma},\mathit{R}^{\Sigma},\mathit{P}^{\Sigma})$ is the proper canonical standard model for Σ iff

$$W^{\Sigma} = \{ \Gamma : Max_{\Sigma}\Gamma \},$$

2 For all
$$\alpha, \beta \in W^{\Sigma}$$
, $\alpha R^{\Sigma} \beta$ iff $\Box^{-1} \alpha \subseteq \beta$,

$$P_n^{\Sigma} = |\mathbb{P}_n|_{\Sigma} = \{ Max_{\Sigma}\Gamma : \mathbb{P}_n \in \Gamma \}.$$

Let Σ be normal. Then for all $\Lambda \in W^{\Sigma}$, \mathcal{M}^{Σ} , $\Lambda \models \varphi$ iff $\varphi \in \Lambda$.

The Truth Lemma. II

Proof.

Use induction on formulas. First assume $\varphi = q$, where q is an atomic formula. Then $\mathcal{M}^{\Sigma}, \Lambda \models q$ iff $\Lambda \in P^{\Sigma}(q)$ iff $q \in \Lambda$. Next assume φ is $\neg \psi$ and the result is true for ψ . Then $\mathcal{M}^{\Sigma}, \Lambda \models \neg \psi$ iff $\mathcal{M}^{\Sigma}, \Lambda \models \psi$ iff $\psi \notin \Lambda$ (by IH) iff $\neg \psi \in \Lambda$ (as $Max_{\Sigma}\Lambda$). Now assume φ is $\mu \lor \gamma$ and the result is true for μ and γ . Then $\mathcal{M}^{\Sigma}, \Lambda \models \mu \lor \gamma$ iff $\mathcal{M}^{\Sigma}, \Lambda \models \mu$ or $\mathcal{M}^{\Sigma}, \Lambda \models \gamma$ iff $\mu \in \Lambda$ or $\gamma \in \Lambda$ (by IH) iff $\mu \lor \gamma \in \Lambda$ (as $Max_{\Sigma}\Lambda$). Finally assume φ is $\Box \psi$ and the result is true for ψ .

Suppose $\mathcal{M}^{\Sigma}, \Lambda \models \Box \psi$. Then for every Δ with $\Lambda R^{\Sigma} \Delta$ we have $\mathcal{M}^{\Sigma}, \Delta \models \psi$, and by IH we get $\psi \in \Delta$. But $\Lambda R^{\Sigma} \Delta$ means $\Box^{-1} \Lambda \subseteq \Delta$. Then by the previous lemma $\Box \psi \in \Lambda$. Conversely suppose $\Box \psi \in \Lambda$. Let Δ be such that $\Lambda R^{\Sigma} \Delta$. So $\Box^{-1} \Lambda \subseteq \Delta$. So since $\Box \psi \in \Lambda$ we have $\psi \in \Box^{-1} \Lambda$. So $\psi \in \Delta$. By IH $\mathcal{M}^{\Sigma}, \Delta \models \psi$. Since Δ was arbitrary $\mathcal{M}^{\Sigma}, \Lambda \models \Box \psi$. $\overleftrightarrow{\Box}$

Theorem

Let Σ be normal. Then $\mathcal{M}^{\Sigma} \models \psi$ iff $\Sigma \vdash \psi$.

Proof.

Suppose $\mathcal{M}^{\Sigma} \models \psi$. Then for every Λ with $Max_{\Sigma}\Lambda$, \mathcal{M}^{Σ} , $\Lambda \models \psi$, so by the truth lemma, $\psi \in \Lambda$. Hence $\Sigma \vdash \psi$.

Conversely suppose $\Sigma \vdash \psi$. Then for all Λ with $Max_{\Sigma}\Lambda$ we have $\psi \in \Lambda$. So again by truth lemma we have $\mathcal{M}^{\Sigma}, \Lambda \models \psi$ for every $\Lambda \in W^{\Sigma}$. Hence $\mathcal{M}^{\Sigma} \models \psi$.

Suppose $Max_{\Sigma}\Gamma$ and $Max_{\Sigma}\Lambda$. Then $\Box^{-1}\Gamma \subseteq \Lambda$ iff $\Diamond \Lambda \subseteq \Gamma$.

Proof.

Assume $\Box^{-1}\Gamma \subseteq \Lambda$. Suppose $\varphi \in \Lambda$. We need to show $\Diamond \varphi \in \Gamma$. By maximality of Γ , it's enough to show $\Box \neg \varphi \notin \Gamma$. If $\Box \neg \varphi \in \Gamma$, then $\neg \varphi \in \Lambda$ by assumption, and this contradicts that Λ is consistent. The other direction is proved similarly. \Box

The Last Step.

Lemma

Let Σ be the system S5. Then \mathcal{M}^{Σ} is reflexive and Euclidean.

Proof.

Let $\Lambda_0, \Lambda_1, \Lambda_2 \in W^{\Sigma}$. First we'll show $\Lambda_0 R^{\Sigma} \Lambda_0$. Assume $\varphi \in \Box^{-1} \Lambda_0$. Then $\Box \varphi \in \Lambda_0$. So by T. $\Box \varphi \to \varphi$, $\varphi \in \Lambda_0$, and done. We're using maximality of Λ_0 to get $\Box \varphi \to \varphi \in \Lambda_0$, because if it's not in Λ_0 then we get a proper superset of Λ_0 which is Σ -consistent.

Now assume $\Lambda_0 R^{\Sigma} \Lambda_1$ and $\Lambda_0 R^{\Sigma} \Lambda_2$. We'll show $\Lambda_1 R^{\Sigma} \Lambda_2$. We have $\Box^{-1} \Lambda_0 \subseteq \Lambda_1, \Lambda_2$. Equivalently, by the previous lemma, $\Diamond \Lambda_1, \Diamond \Lambda_2 \subseteq \Lambda_0$. We claim $\Diamond \Lambda_2 \subseteq \Lambda_1$. Let $\Diamond \varphi \in \Diamond \Lambda_2$. Then $\varphi \in \Lambda_2$. So $\Diamond \varphi \in \Lambda_0$. By 5. $\Diamond \varphi \to \Box \Diamond \varphi$, we have $\Box \Diamond \varphi \in \Lambda_0$. So $\Diamond \varphi \in \Lambda_1$, and the claim is proved. Now, again, by the previous lemma, $\Box^{-1} \Lambda_1 \subseteq \Lambda_2$, or rather $\Lambda_1 R^{\Sigma} \Lambda_2$. Hence R^{Σ} is Euclidean.

Now we're ready to prove our main result. Recall:

Definition

A system Σ of modal logic has the Finite Model Property if every non-theorem of Σ is false in some <u>finite</u> model for Σ .

Theorem

The system S5 has the finite model property.

Proof.

Denote the system S5 by Σ . Let φ be a formula. Suppose $\Sigma \nvDash \varphi$. Then $\mathcal{M}^{\Sigma} \nvDash \varphi$ as S5 is normal. So since \mathcal{M}^{Σ} is reflexive and Euclidean, there is a universal model \mathcal{N} so that $\mathcal{N} \nvDash \varphi$. Take the filtration \mathcal{N}^* of \mathcal{N} over the finite set

 $\Gamma = \{\psi : \psi \text{ is a subformula of } \varphi\}.$

Then, since \mathcal{N}^* and \mathcal{N} are "alike" inside Γ , we have $\mathcal{N}^* \nvDash \varphi$. And since \mathcal{N} is universal and Γ is finite, \mathcal{N}^* is finite universal. So \mathcal{N}^* is a finite model of S5 with $\mathcal{N}^* \nvDash \varphi$. Hence S5 has FMP.

- Modal Logic an Introduction, B.F. Chellas
- Boxes and Diamonds, The Open Logic Project