
Parking Functions and Labeled Trees : Inversions of Labeled

Trees

Janitha Aswedige

Abstract

This is a report on the sections 1.1 and 1.2 of the book “Handbook of Enumerative Combi-
natorics”. We fill in the details of the proofs and construct several examples to understand the
content better.

Contents

1 Introduction to Parking Functions 1

2 Some Notation 2

3 Labeled Trees with Prüfer Code 2

4 Inversions of Labeled Trees 4

5 References 7

1 Introduction to Parking Functions

Suppose we have n cars C1, . . . , Cn. They want to park on a one-way street with ordered parking
spaces 0, . . . , n− 1. Each car has a preferred parking space ai. The card enter the street one at a time
in the order C1, . . . , Cn. Each car tried to park in its preferred space. If the preferred space is taken,
it parks in the next available space. If no space is left, then the car leaves the street. The sequence
a = (a1, . . . , an) is called a parking function of length n if all the cars can park.

Assume we have only three cars C1, C2, C3, and a1 = 1, a2 = 2, and a3 = 2. Then (a1, a2, a3) = (1, 2, 2)
is not a parking function as C3’s preferred spot is 2, and it’s taken by C2, and there are no spot to the
right of 2. Some examples of parking functions are (0, 1, 2) and (0, 1, 1).

We’ll characterize parking functions in the following lemmas. But before that we’ll look at some
concrete examples.

Suppose we have 4 cars C1, C2, C3, and C4. And they need to park in the parking spaces a1, a2, a3, a4 ∈
{0, 1, 2, 3}. Assume a = (a1, a2, a3, a4) is a parking function. Then at least one of ai’s must be a 0.
Because otherwise the four cars will have to park in at most 3 parking spots which is absurd by the
pigeonhole principle. Likewise there must be at least two ai’s which are less than 2. If not, there will
be exactly one 0 and three ai’s greater than or equal to 2, that is there will be exactly one car which
wants to park at the space 0, and three cars which want to park at a space greater than or equal to
2. This is also impossible by the pigeonhole principle. So there must be at least two ai’s less than 2.
Similarly we see that there must be at least three ai’s less than 3. And clearly all the ai’s must be less
than 4. So there are at least four ai’s less than 4.

On the other hand if there are at least k ai’s less than k for each k = 1, 2, 3, 4 we see that each car can
park without leaving the street. The reason for this is the following. If there is a conflict of preferences
then the cars can always resolve in to agreeing to park in some combination of (0, 1, 2, 3), which indeed
allows all of them to park without leaving the street.

1

Generalizing the above fact we immediately have the following lemma.

Lemma 1.1. a = (a1, . . . , an) is a parking function if and only if a has at least i terms less than i for
each 1 ≤ i ≤ n.

Lemma 1.2. Let a(1) ≤ a(2) ≤ · · · ≤ a(n) be the non-decreasing rearrangement of a = (a1, . . . , an).
Then a is a parking function if and only if 0 ≤ a(i) < i.

Proof. This follows immediately from Lemma 1.1 and the fact that each ai is an integer. For example
0 ≤ a(1) < 1 forces a to have at least one 0, and 0 ≤ a(2) < 2 forces a to have at least two terms less
than 2, and so on.

Lemma 1.3. Let a = (a1, . . . , an). Then a is a parking function if and only if there exists σ ∈ Sn so
that 0 ≤ aσ(i) < i.

Proof. This follows from Lemma 1.1 and Lemma 1.2.

Next we’ll count the number of parking functions of length n.

Theorem 1.4. The number of parking functions of length n is (n+ 1)n−1.

Proof. This proof is due to Pollak. Add an extra space n + 1 and arrange 0, 1, . . . , n + 1 in a circle
clockwise. Preferences ai are in {0, 1, . . . , n}. So we have (n + 1)n sequences (a1, . . . , an). We treat
ai = n as any other preference. If space n is occupied Ci moves clockwise to the first unoccupied space.
Observe that any sequence of preferences leaves one space unoccupied. By symmetry the number of
sequences leaving the space k is the same for all 0 ≤ k ≤ n. But if k = n, then we get a parking
function. Combining the last two sentences we get the number of parking functions is 1

n+1 of the total
number of sequences, which gives

Number of parking functions =
1

n+ 1
(n+ 1)n = (n+ 1)n−1.

2 Some Notation

We write [n] for the set {1, 2, . . . , n} and [n]0 for the set {0, 1, . . . , n}. A function f : [n] → [n] is
viewed as the sequence f(1), f(2), . . . , f(n). If (hi) is a sequence denote it by the boldface letter h.
The boldface letter a is reserved for a parking function of length n. The set of all parking functions of
length n is denoted by PKn. By Theorem 1.4 we have |PKn| = (n+ 1)n−1.

A labeled tree on [n]0 is a connected graph on the vertex set [n]0 with no cycles. The set of all labeled
trees with vertex set [n]0 is denoted by Tn+1.

3 Labeled Trees with Prüfer Code

A Prüfer code associates with each labeled tree with n vertices a unique sequence of length n− 2 via
the following algorithm.

Step 1 : Remove the leaf with smallest label and set

c1 = label of the neighbouring leaf of the the removed leaf.

Step i : Remove the leaf with smallest label and set

ci = label of the neighbouring leaf of the the removed leaf.

Let’s look at an example.

2

Example 3.1. Consider the following tree.

3

1

0

2 4

It has the Prüfer code (3, 0, 0). Note that once the algorithm ends we’re left with the edge connecting
0 and 4. This is always the case; we’ll be left with a single edge connecting two nodes. So the length
of the Prüfer code for a labeled tree with n vertices is indeed n− 2.

For each parking function of length n we can associate a difference sequence (c1, . . . , cn−1) of length
n− 1 defined as follows.

c1 = a2 − a1 mod n+ 1

...

cn−1 = an − an−1 mod n+ 1

By Theorem 1.4 and Cayley’s formula we have |PKn| = |Tn+1|. It turns out that there is an explicit
bijection between PKn and Tn+1 which involves Prüfer codes. The following result is due to Pollack.

Theorem 3.1. For each parking function a = (a1, . . . , an), define the difference sequence (c1, . . . , cn−1)
as above. Let T (a) be the labeled tree in Tn+1 whose Prüfer code is (c1, . . . , cn−1). Then the map
a 7→ T (a) is a bijection from PKn to ([n0])

n−1.

Proof. Since c1 = a2 − a1 mod n+1 we have a2 = c1 + a1 mod n+1. Since c2 = a3 − a2 mod n+1
we have a3 = c2 + a2 mod n+ 1 = a1 + c1 + c2 mod n+ 1. Continuing in this manner we have

ai = a1 + c1 + · · ·+ ci−1 mod n+ 1 for all 2 ≤ i ≤ n. (1)

So we see that the difference sequence (c1, . . . , cn−1) determines the parking function a if we know a1.
So our goal is to determine an algorithm to find a1 for each (c1, . . . , cn) ∈ {0, 1, . . . , n}n−1 such that
the sequence (a1, . . . , an) determined by Equation (1) is a parking function.

Algorithm to determine a1: Given (c1, . . . , cn−1) ∈ [n0]
n−1.

• Step 1 : Let h1 = 0, hi = c1 + · · ·+ ci−1 mod n+ 1 for 2 ≤ i ≤ n.

• Step 2 : Let r(h) = (r0, . . . , rn) where ri = |{j : hj = i}|.1 Let

Rj(h) = r0 + · · ·+ rj − j − 1

for 0 ≤ j ≤ n. Here h is the sequence (h1, . . . , hn).

• Step 3 : Let d be the smallest index so that

Rd(h) = min{Rj(h) : 0 ≤ j ≤ n},

and put
a1 = n− d.

Let’s look at some examples.

1r(h) is called the specification of h.

3

Example 3.2. Prüfer code is (2, 4, 7, 0, 2, 5). Here n = 7. First we’ll determine the sequence h. h1 is
always 0. And h1 = 2, h3 = 6, h4 = 5, h5 = 5, h6 = 7, and h7 = 4. So h = (0, 2, 6, 5, 5, 7, 4). Next
we determine r(h), the specification of h. Note that ri gives the number of cars whose preferred spot
is i according to h. We’ll say more about this in our next examples. For now, we’ll just follow the
algorithm. So we have r(h) = (1, 0, 1, 0, 1, 2, 1, 1). The final step is to determine R(h). R(h) is indeed
the sequence (0,−1,−1,−2,−2,−1,−1,−1). And the minimum value of R(h) occurs at the third index,
i.e. d = 3. Therefore a1 = n− d = 7− 3 = 4. So we get the parking function a = (4, 6, 2, 1, 1, 3, 0).

We observed that the sequence h is an attempt at a parking function. If we consider the entries in h
as the preferences of the cars C1, . . . , Cn, then what the sequence h does is allowing the cars to park
in a circular street which has n + 1 parking spaces. In doing so, there will be a vacant parking spot.
And the rest of the algorithm determines the number of clockwise rotations the cars need to perform
so that the (n + 1)-th parking space is empty, thus allowing all the cars to park as specified in the
original parking problem. This is essentially Pollack’s idea in his counting parking functions proof. So
in case h allows the cars to park in the first n parking spots with zero cars leaving the street, that is
with (n + 1)-th spot vacant, then we can always stop at h. Because once we calculate the sequence
R(h) we’ll see that d = n and therefore a1 = n − n = 0. This scenario is illustrated in the following
examples.

Example 3.3. Prüfer code is (1, 3, 7, 0, 2, 4). Here n = 7. We can check that the sequence h is
(0, 1, 4, 3, 3, 5, 1). We’ll eventually see that h is the required parking function of length 7. And the
specification of h is r(h) = (1, 2, 0, 2, 1, 1, 0, 0). The sequence R(h) is (0, 1, 0, 1, 1, 1, 0,−1). And −1 is
the minimum and it occurs at d = 7. So a1 = n − d = 7 − 7 = 0. That is, h is indeed the parking
function output by the algorithm.

4 Inversions of Labeled Trees

Start with a parking function a = (a1, . . . , an) of length n. We’ve already seen that not every car gets
to park in it’s preferred parking spot. So assume Ci parks at pi for each 1 ≤ i ≤ n. The meaning of pi
is the following. If ai is unoccupied and it’s Ci’s turn to park then pi = ai. And if ai is occupied and
it’s Ci’s turn, then pi ̸= ai, and indeed pi > ai. But at the end of the day p1, . . . , pn is always going
to be a permutation on {0, 1, . . . , n− 1}.

Definition 4.1. Let a = (a1, . . . , an) be a parking function of length n. The total displacement,
denoted by D(a), is defined as follows.

D(a) =

n∑
1

(pi − ai) =

(
n

2

)
−

n∑
1

ai. (2)

Total displacement D(a) is the total number of failed trials before each car find its parking space.
Hence it’s also called the total inconvenience. Let’s look at some examples.

Example 4.1. n = 4 and a = (0, 0, 0, 0). Then p1 = 0, p2 = 1, p3 = 2, and p4 = 3. Moreover,∑4
1 ai = 0. Thus

D(a) =

4∑
1

(p1 − ai) = 6 =

(
4

2

)
−

4∑
1

ai.

Example 4.2. For the parking function a = (1, 0, 3, 2) the total displacement is 0, because there is no
inconvenience experienced by the cars when finding their parking spots. Equation (2) indeed says so.

It’s simply because pi = ai for each i, and
(
4
2

)
= 6 =

∑4
1 ai.

Definition 4.2. The displacement enumerator of parking functions is the polynomial

Pn(q) =
∑

a∈PKn

qD(a) =
∑

a∈PKn

q(
n
2)−(a1+···+an) = q(

n
2)

∑
a∈PKn

q−(a1+···+an). (3)

4

The degree of Pn(q) is defined to be
(
n
2

)
.

We’ll look at an example.

Example 4.3. We know that PK2 = {(0, 0), (0, 1), (1, 0)}. A nonzero total inconvenience/displacement
occurs only in (0, 0). Thus

P2(q) = q1 + q0 + q0 = q + 2.

This is also satisfied by each of the equalities in Equation (3). And we see that the degree of P2(q) is
indeed 1 =

(
2
2

)
.

Next we’ll look at inversions of trees. What follows is a few definitions. Recall that Tn+1 is the set of
all labeled trees with vertex set [n]0. We’ll view 0 as the root of T for T ∈ Tn+1. Let T ∈ Tn+1. An
inversion in T is a pair of vertices labeled i, j such that i > j and i is on the unique path from 0 to j
in T .

Definition 4.3. Let T ∈ Tn+1. Then inv(T) = Number of inversions in T .

Recall that an inversion in a permutation σ1, . . . , σn+1 of {0, . . . , n} is a pair (σi, σj) so that i < j and
σi > σj . It’s clear that the notions of inversions in permutations and inversions in trees coincide if the
tree is a path.

Example 4.4. There are three non-isomorphic labeled trees in T2. The only tree in T2 with an inversion
is the following path. And it has exactly one inversion.

1

2

0

Definition 4.4. The inversion enumerator In(q) of labeled trees on n+1 vertices, i.e. with the vertex
set [n]0, is the polynomial

In(q) =
∑

T∈Tn+1

qinv(T). (4)

Example 4.5. Look at T2. Then in Example 4.4 we saw there are three non-isomorphic labeled trees
and exactly one of them has an inversion. So we have I2(q) = q0+q0+q1 = 2+q. Here’s where things
get prettier! Compare the polynomial I2(q) with P2(q) in Example 4.3. They are the same! That is,

I2(q) = 2 + q = P2(q).

It turns out that this isn’t merely a fluke.

Theorem 4.1. We force I0(q) = 1 = P0(q). We have the following recurrence relations.

1. (a) I1(q) = 1,

(b) In+1(q) =
∑n

i=0

(
n
i

)
(qi + qi−1 + · · ·+ 1)Ii(q)In−i(q).

2. (a) P1(q) = 1,

(b) Pn+1(q) =
∑n

i=0

(
n
i

)
(qi + qi−1 + · · ·+ 1)Pi(q)Pn−i(q).

3. Consequently, In(q) = Pn(q).

We will not discuss the proof of this theorem. However it’s noticed that item 3 follows immediately
from items 1 and 2, and by an induction on n. Moreover, we notice that Pn(1) gives the number of
parking functions of length n. We’ll in fact attempt to prove this.

Theorem 4.2. For each n we have Pn(1) = (n+ 1)n−1.

5

Next we describe a bijection ϕ : PKn → Tn+1 so that D(a) = inv(ϕ(a)), which is due to Knuth. We’ll
describe the algorithm using an example.

Let a = (a1, . . . , an) ∈ PKn and pi be the space Ci occupies. Put p
′
i = pi +1 and p′ = p′1 . . . p

′
n. Then

p′ is a permutation of length n. Let q = q1 . . . qn be the inverse of p′. This means Cqi is parked at
i− 1.

Take a = (4, 0, 1, 0, 3, 6, 4) ∈ PK7. Then the cars C1, . . . , C7 are parked as follows.

C2 C3 C4 C5 C1 C7 C6

And we have
p = (4, 0, 1, 2, 3, 6, 5)

and
p′ = (5, 1, 2, 3, 4, 7, 6).

Note that p′ in cycle notation is (1 5 4 3 2)(6 7). So its inverse q in cycle notation is is (5 1 2 3 4)(6 7).
And therefore q = (2, 3, 4, 5, 1, 7, 6).

Step 1: Construct an auxiliary tree as follows.

Let the predecessor of vertex k be the first element on the right of k and larger than k in q. If no such
element exists, then let the predecessor be 0.

We’ll denote “i is the predecessor of j” by i ≺ j. Then we have 7 ≺ 1, 0 ≺ 7, 3 ≺ 2, 7 ≺ 5 ≺ 4 ≺ 3, and
0 ≺ 6. So we get the auxiliary tree :

0

6

7

5

1

4 3 2

Step 2: Make a copy of the auxiliary tree. Relabel the nonzero vertices of the new tree as follows in
preorder.

If the label of the current vertex was k in the auxiliary tree, swap its current label with the label that
is currently (p′k − ak)-th smallest in the subtree rooted at the current vertex. The final tree is ϕ(a).

We’ll illustrate a few steps. Note that nothing will happen to vertices labeled 0, 6, and 1. So we start
at the vertex 7. Look at p′7 − a6 which is 2. So we look for the 2nd smallest in the set {7, 1, 5, 4, 3, 2},
which is 2. So 7 and 2 get swapped. We have the following tree.

0

6

2

5

1

4 3 7

Next we look at the vertex 5. We have p′5 − a5 = 4− 3 = 1. So we look for the 1st smallest in the set
{5, 4, 3, 7}, which is 3. So 5 and 3 get swapped. And we have the following tree.

6

0

6

2

3

1

4 5 7

Next we look at the vertex 4. We have p′4 − a4 = 3 − 0 = 3. So we want the 3rd smallest in the set
{4, 5, 7}, which is 7. So 4 and 7 get swapped. We have the following tree.

0

6

2

3

1

7 5 4

Finally we look at the vertex 5. We have p′5 − a5 = 4− 3 = 1. So we need the 1st smallest in the set
{5, 4}, which is 4. And we swap 4 and 5 to obtain the tree we wanted.

0

6

2

3

1

7 4 5

Note that D(a) = 3. And the final tree we obtained has exactly three inversions, namely (2, 1), (7, 4),
and (7, 5). So we have D(a) = inv(ϕ(a)).

5 References

1. Handbook of Enumerative Combinatorics, Miklós Bóna.

2. Parking Functions : From Combinatorics to Probability, Richard Kenyon, Mei Yin.

7

	Introduction to Parking Functions
	Some Notation
	Labeled Trees with Prüfer Code
	Inversions of Labeled Trees
	References

