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Introduction...

In their paper “Alpha-Theory: An Elementary Axiomatics for
Nonstandard Analysis” V. Benci and M. Di Nasso present the
methods of NSA by postulating a few properties for an infinite “ideal”
number α.

We can think of this as postulating a set of axioms for the imaginary
number i and building C on it.

Here, I try to present what I learned from the paper and discuss how
they are related to what we learned in class.
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The Five Axioms...Informally

α1. Extension Axiom: For every sequence ϕ there is a unique element
ϕ[α], called the ideal value of ϕ or the value of ϕ at infinity.

α2. Composition Axiom: For sequences ϕ and ψ and if f is a function
such that the compositions f ◦ ϕ and f ◦ ψ make sense, then
ϕ[α] = ψ[α] =⇒ (f ◦ ϕ)[α] = (f ◦ ψ)[α].

α3. Number Axiom: If cr : n 7→ r is the constant sequence with value
r ∈ R, then cr [α] = r . If 1N : n 7→ n is the identity sequence on N, then
1N[α] = α /∈ N.

α4. Pair Axiom: For all sequences ϕ,ψ, and θ, if for all n
θ(n) = {ϕ(n), ψ(n)}, then θ[α] = {ϕ[α], ψ[α]}.
α5. Internal Set Axiom: If ψ is a sequence of atoms1, then ψ[α] is an
atom. If c∅ : n 7→ ∅ is the constant sequence taking the value the empty
set, then c∅[α] = ∅. If ψ is a sequence of nonempty sets, then
ψ[α] = {ϕ[α] : ϕ(n) ∈ ψ(n) ∀n}.

1same as urelements
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Some Comments on the Five Axioms...

Axiom α3 gives a new number α which is not a natural number.
We’ll see that this is not even a real number!

Does the Compactness Theorem justify the existence of α?

We’ll also see that the ideal value of a sequence ϕ : N→ A is the
value of the extended sequence ϕ : ∗N→ ∗A at α.
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Some consequences of the five axioms...

♣ ϕ and ψ are sequences of non-empty sets throughout.

1. Union: θ(n) = ϕ(n) ∪ ψ(n) =⇒ θ[α] = ϕ[α] ∪ ψ[α].

2. Subset: ϕ(n) ⊆ ψ(n) =⇒ ϕ[α] ⊆ ψ[α].

3. Ordered Pair: θ(n) = (ϕ(n), ψ(n)) =⇒ θ[α] = (ϕ[α], ψ[α]).

4. Cartesian Product: θ(n) = ϕ(n)× ψ(n) =⇒ θ[α] = ϕ[α]× ψ[α].

5. Difference: ϕ(n) 6= ψ(n) =⇒ ϕ[α] 6= ψ[α], and
ϕ(n) /∈ ψ(n) =⇒ ϕ[α] /∈ ψ[α].

6. Setminus: θ(n) = ϕ(n) \ ψ(n) =⇒ θ[α] = ϕ[α] \ ψ[α].

7. Intersection: θ(n) = ϕ(n) ∩ ψ(n) =⇒ θ[α] = ϕ[α] ∩ ψ[α].
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Proof.

1. Suppose ζ ∈ ϕ[α] ∪ ψ[α]. Then either ζ ∈ ϕ[α] or ζ ∈ ψ[α]. Assume
ζ ∈ ϕ[α]. Then, by the internal set axiom, ζ = ζ̃[α] for some sequence ζ̃
with ζ̃(n) ∈ ϕ(n) for all n. So, ζ̃(n) ∈ ϕ(n) ∪ ψ(n) = θ(n) for all n.
Hence, by the internal set axiom, ζ ∈ θ[α]. Similarly, if ζ ∈ ψ[α], then
ζ ∈ θ[α], and therefore ϕ[α] ∪ ψ[α] ⊆ θ[α].

Now suppose ζ ∈ θ[α]. Then ζ = ζ̃[α], where ζ̃(n) ∈ θ(n) = ϕ(n) ∪ ψ(n)
for all n. Define a sequence η as follows:

η(n) =

{
ϕ(n) if ζ̃(n) ∈ ϕ(n)

ψ(n) if ζ̃(n) ∈ ψ(n) \ ϕ(n).

Then η(n) ∈ {ϕ(n), ψ(n)} for all n. Put η′(n) = {ϕ(n), ψ(n)} for all n.
Then, by the pair axiom, η′[α] = {ϕ[α], ψ[α]}. But η(n) ∈ η′(n) for all n.
So, by the internal set axiom, η[α] ∈ η′[α]. So, η[α] = ϕ[α] or
η[α] = ψ[α]. But ζ̃(n) ∈ η(n) for all n. So, again by the internal set
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axiom, ζ̃[α] ∈ η[α]. Therefore, ζ̃[α] = ϕ[α] or ζ̃[α] = ψ[α]. Hence
ζ = ζ̃[α] ∈ ϕ[α] ∪ ψ[α], and done!

For the proofs of the other results see the Appendix B.
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Ideal Values behave nicely...

1. If ϕ is a sequence of atoms (or sets, or nonempty sets) then ϕ[α] is an
atom (or a set, a nonempty set, respectively).

2. If the value at infinity ϕ[α] is an atom (or a set, or a nonempty set)
then there exists a sequence ψ(n) of atoms (of sets, of nonempty sets,
respectively) so that ψ[α] = ϕ[α].

3. Elements of values at infinity are values at infinity.

649B Class Project (janitha fernando) α-theory Spring 2021 8 / 46



Ideal Values continue to behave nicely...

1. If the sequence ϕ and ψ agree eventually, then ϕ[α] = ψ[α].

2. If the sequences ϕ and ψ differ eventually, then ϕ[α] 6= ψ[α].

Comment: By the property 2, the ideal values of the two sequences 〈1/n〉
and 〈1/(n + 1)〉 must be different! But this was a little counter-intuitive
to me at first because these two sequences have the same value at infinity
which I thought was their limit! However, the notion of “shadows” cleared
my confusion. We’ll see it shortly.
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Proof.
1. Let {n : ϕ(n) 6= ψ(n)} = {n1, . . . , nk}. Fix m with ϕ(m) = ψ(m). Put

ζ(n) =

{
n if ϕ(n) 6= ψ(n)

m if ϕ(n) = ψ(n).

Then by the pair axiom ζ[α] = α or ζ[α] = m. But ζ(n) ∈ {n1, . . . , nk ,m}
and α /∈ N, whence ζ[α] = m. Let A be the range of ϕ. Put

η(n) =

{
A if n 6= m

∅ if n = m.

Now, (η ◦ ζ)(n) = A, and therefore {ϕ(n)} \ {ψ(n)} ⊆ A as A is the range
of ϕ. Therefore {ϕ[α]} \ {ψ[α]} ⊆ (η ◦ ζ)[α]. But ζ[α] = m = cm[α]. So,
(η ◦ ζ)[α] = (η ◦ cm)[α] = c∅[α] = ∅ by the composition axiom. Hence
{ϕ[α]} \ {ψ[α]} = ∅ or rather ϕ[α] = ψ[α]. �
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Proof.

2. ϕ(n) 6= ψ(n) for all but finitely many n. So, {ϕ(n)} \ {ψ(n)} = {ϕ(n)}
for all but finitely many n. Therefore {ϕ[α]} \ {ψ[α]} = {ϕ[α]}. Hence
ϕ[α] 6= ψ[α]. �
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Resemblances... Agreeing on a “big set” is enough?

Suppose ϕ[α] = ψ[α] and let Λ = {n : ϕ(n) = ψ(n)}. Then for all
sequences ζ and η we have
1. If ζ(n) = η(n) for all n ∈ Λ, then ζ[α] = η[α].

2. If ζ(n) ∈ η(n) for all n ∈ Λ, then ζ[α] ∈ η[α].

The corresponding results hold when = and ∈ are replaced with 6= and /∈
respectively in Λ, and 1 and 2. Obviously, the ∈ in the quantifiers remain
unchanged.

Comment: (We’ll use this idea later in our proof of countable saturation)
If ϕ[α] 6= ψ[α], we can assume without loss of generality that ϕ(n) 6= ψ(n)
for all n. Here’s why. Put Λ = {n : ϕ(n) 6= ψ(n)}. Define ϕ′(n) = ϕ(n) if
n ∈ Λ and ϕ′(n) 6= ψ(n) otherwise. Then ϕ′(n) 6= ψ(n) for all n. Also,
ϕ′[α] = ϕ[α].
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Proof.

We’ll look at the proof of 1 only. For the proofs of the other properties see
the Appendix B. Suppose ζ(n) = η(n) for all n ∈ Λ. Define

θ(n) =

{
{ζ(n)} = {η(n)} if n ∈ Λ

∅ otherwise .

Observe that ({ϕ(n)} \ {ψ(n)}) ∪ θ(n) = {ϕ(n)} outside Λ, and
({ϕ(n)} \ {ψ(n)}) ∪ θ(n) = {ζ(n)} inside Λ. So,
({ϕ(n)} \ {ψ(n)}) ∪ θ(n) 6= ∅. Therefore, since ϕ[α] = ψ[α], we have
({ϕ[α]} \ {ψ[α]}) ∪ θ[α] = θ[α] 6= ∅. By the pair axiom θ[α] = ∅ or
θ[α] = {ζ[α]} = {η[α]}. But since θ[α] 6= ∅ we have
θ[α] = {ζ[α]} = {η[α]}, or rather ζ[α] = η[α]. �
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The Star-Operator

Introduces a notion of “idealization” for any entity A, namely the
nonstandard extension or star-transform ∗A.2

Definition

For any entity A, ∗A = cA[α], the value at infinity taken by the constant
sequence cA : n 7→ A.

Comments: By the Number Axiom ∗r = r for all reals r .

By the internal set axiom cA[α] = {ψ[α] : ψ(n) ∈ cA(n) ∀n} = {ψ[α] :
ψ(n) ∈ A ∀n} = {ψ[α] : ψ : N→ A}. Hence

∗A = {ψ[α] : ψ : N→ A}.

2In the paper the authors use A∗, but I will use ∗A as that’s what we used in class.
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Star-operator preserves basic operations of sets except the
powerset...

To see A = B =⇒ ∗A = ∗B, observe that A = B =⇒ cA(n) = cB(n) for
all n ⇐⇒ ∗A = cA[α] = cB [α] = ∗B. Similarly other set operations are
preserved by the star-operator. In sum we have:

A = B ⇐⇒ ∗A = ∗B

A ∈ B ⇐⇒ ∗A ∈ ∗B
A ⊆ B ⇐⇒ ∗A ⊆ ∗B
∗{A,B} = {∗A,∗ B}
∗(A,B) = (∗A,∗ B)
∗(A ∪ B) = ∗A ∪ ∗B
∗(A ∩ B) = ∗A ∩ ∗B
∗(A \ B) = ∗A \ ∗B
∗(A× B) = ∗A× ∗B
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Star-transform of a function...

For a function f : A→ B, its star-transform ∗f : ∗A→ ∗B is a function so
that for every sequence ϕ : N→ A we have ∗f (ϕ[α]) = (f ◦ ϕ)[α].

Comment: The ideal value of a sequence ϕ : N→ A is the value of the
extended sequence ϕ : ∗N→ ∗A at α, i.e.

ϕ[α] = (ϕ ◦ 1N)[α] = ∗ϕ(1N[α]) = ∗ϕ[α].
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The Hyperreal Line...

Definition

The set of hyperreal numbers is the star transform ∗R of the set of real
numbers, i.e.

∗R = {ϕ[α] : ϕ : N→ R}.

Comment: By the number axiom every real number is a hyperreal number.
So R ⊆ ∗R. In fact, this inclusion is proper! Proof, shortly.

For more details see sections 2.2, 2.3, and 2.4. which I will skip as the aim
of this presentation is to discuss more about the foundational aspects of
the theory developed by the authors.
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The Hypernatural Numbers...

Definition

The set of hypernatural numbers is the star-transform of the set of natural
numbers, i.e.

∗N = {ϕ[α] : ϕ : N→ N}.

Clearly ∗N ⊆ ∗R. Now let’s see why R ( ∗R. For every
k ∈ N, α = 1N(α) > ck(α) = k . So α ∈ ∗R \ R.
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Some nice facts about hypernaturals...

1. The natural numbers are a proper initial segment of the hypernatural
numbers i.e. N ( ∗N and for every ζ ∈ ∗N, ζ < n ∈ N =⇒ ζ ∈ N.

2. The hypernatural numbers are unbounded in the hyperreal line.

3. For every ζ ∈ ∗N, there are no hypernatural numbers η strictly between
ζ and ζ + 1.

For more details see sections 2.2, 2.3, and 2.4. which I will skip as the aim
of this presentation is to discuss more about the foundational aspects of
the theory developed by the authors. Section 3 introduces infinitesimals,
infinitely large numbers, and nonstandard calculus.
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Shadow Theorem...

Theorem

Every finitea hyperreal number ζ is infinitely close to a unique real number
r , called the shadow of ζ. Symbolically, r = sh(ζ).b

afinite hyperreals are defined in the same way we defined them in class.
bShadow of ζ is the same as the standard part of ζ.

Proof.

This is Theorem 3.5.
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Confusions revisited...

We had the following comment.

Comment: By the property 2, the ideal values of the two sequences 〈1/n〉
and 〈1/(n + 1)〉 must be different! But this was a little counter-intuitive
to me at first because these two sequences have the same value at infinity
which I thought was their limit! However, the notion of “shadows” cleared
my confusion. We’ll see it shortly.

The simple answer is the ideal values (or the values at infinity) and limits
are not the same thing.

We have if limn ϕ(n) = ` then sh(ϕ[α]) = `. However, if sh(ϕ[α]) = `
then all we can say is that there is a subsequence of ϕ(n) with limit `.
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Some Calculus...

One difference with the Alpha-Theory approach to calculus is that it
doesn’t appeal to transfer. Let’s look at an example.

f : A→ R is a function and A contains a nbhd of x0. Then f is
continuous at x0 if for every ζ ∈ ∗A, ζ ∼ x0 =⇒ ∗f (ζ) ∼ f (x0).

We’ll prove the intermediate value theorem. f : [a, b]→ R is continuous
and f (a) < 0 and f (b) > 0. Need to show that there is x0 ∈ (a, b) with
f (x0) = 0.

For each n > 0 put A(n) = {a + i b−an : i = 0, . . . , n − 1}. A(n) partitions
[a, b] into n intervals of equal length. Put
η(n) = max{x ∈ A(n) : f (x) < 0} and ζ(n) = η(n) + b−a

n . Then

ζ(n) ∈ [a, b] (worst case is η(n) = (n − 1)b−an ). And f (ζ(n)) ≥ 0 because
ζ(n) > η(n).

ζ(n)− η(n) = b − a/n for all n. So ζ[α]− η[α] = b−a
α ∼ 0. Therefore

ζ[α] ∼ η[α]. So Sh(ζ[α]) = Sh(η[α]) = x0 for some x0 ∈ [a, b].
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Some Calculus...ctd

∗f (ζ[α]) ∼ f (x0) ∼ ∗f (η[α]) by continuity. Since f (ζ(n)) ≥ 0 for all n we
have ∗f (ζ[α]) ≥ 0, and since f (η(n)) < 0 for all n we have ∗f (η[α]) < 0.
This forces f (x0) = 0.
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Internal Sets...

Definition

An entity is internal if it is the ideal value of some sequence. An entity is
external if it is not internal.

Every nonstandard extension is internal.

α is internal by the number axiom.

Comment: Recall that, in class, we defined A to be an internal set if
A ∈ ∗B for some B ∈ V (S). But we saw that ∗B = {ϕ[α] : ϕ ∈ NB}.
This is so by the internal set axiom. Hence if A ∈ ∗B then A = ϕ[α] for
some sequence ϕ. This kinda justifies why “the internal set axiom” is
called the internal set axiom.
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Countable Saturation...

Theorem

If {Ak : k ∈ N} is a countable family of internal sets with FIP, then⋂
k∈N Ak 6= ∅.

Proof: Let k ∈ N be arbitrary. Then Ak = ϕk [α] for some sequence
〈ϕk(n)〉n∈N. By hypothesis,
ϕ1[α] ∩ · · · ∩ ϕk [α] = A1 ∩ · · · ∩ Ak 6= ∅ = 1∅[α]. So, we may assume
without loss of generality that ϕ1(n)∩ · · · ∩ϕk(n) 6= 1∅(n) for all n. Define
the sequence 〈ψ(n)〉 by letting ψ(n) ∈ ϕ1(n) ∩ · · · ∩ ϕk(n) for all n. Then
ψ[α] ∈ ϕ1[α] ∩ · · ·ϕk [α]. Since k was arbitrary, the proof is complete. �
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Overflow and Underflow...

These principles are proved using saturation. See Proposition 4.6.
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The Foundations

We work in the language L = {∈,A, J}, and write the axioms of the
Alpha-Theory. This is the language of set theory with a set A of atoms (A
is a constant symbol), and a binary relation symbol J.

J1. Extension Axiom. If ϕ is a sequence, then there is a unique x so that
J(ϕ, x). If J(ϕ, x) for some x , then ϕ is a sentence.3

J2. Composition Axiom. If ϕ,ψ are sequences and if f is any function
such that f ◦ ϕ and f ◦ ψ make sense, then

∀x [(J(ϕ, x) ∧ J(ψ, x))→ ∃y(J(f ◦ ϕ, y) ∧ J(f ◦ ψ, y))].

J3. Number Axiom. Let r ∈ R ⊆ A. If cr : n 7→ r is the sequence with
value r , then ∀x [J(cr , x)→ x = r ]. If 1N : n 7→ n is the identity sequence
on N, then ∀x [J(1N, x)→ x /∈ N].

3This tells us that J is a function defined on the class of all sequences.
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Foundations

J4. Pair Axiom. For all sequences ϕ,ψ, θ with θ(n) = {ϕ(n), ψ(n)} for all
n we have

∀x∀y∀z [(J(ϕ, x) ∧ J(ψ, y) ∧ J(θ, z))→ z = {x , y}].

J5. Internal Set Axiom.4 If ψ is a sequence of atoms, then
∀x [J(ϕ, x)→ x ∈ A]. If c∅ is the constant sequence with value the empty
set, then J(c∅, ∅). If ϕ is a sequence of nonempty sets, then

∀x [J(ϕ, x)→ ∀y(y ∈ x ↔ ∃ψ(ψEϕ ∧ J(ψ, y)))].

4ψEϕ is an abbreviation for ψ(n) ∈ ϕ(n) for all n ∈ N.
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The Foundations

Definition

The Alpha-Theory is the first order theory in the language L = {∈,A, J},
whose axioms consist of:

All axioms of ZFCAa, with the only exception of the foundation
axiom. Separation and replacement schemes are also considered for
formulas with the symbol J.

The five axioms J1,J2,J3,J4,J5.

aZermelo-Fraenkel set theory with atoms
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An important ultrafilter...

Lemma

Put Uα = {A ⊆ N : α ∈ ∗A}. Then Uα is a nonprincipal ultrafilter.

Proof.
Obviously N ∈ Uα, and ∅ /∈ Uα as ∗∅ = ∅. Since A ⊆ B =⇒ ∗A ⊆ ∗B,
Uα “filters sets upwards”. And since ∗(A ∩ B) = ∗A ∩ ∗B, Uα is closed
under finite intersections. Hence Uα is a filter. Suppose A ⊆ N and
A /∈ Uα. Then α /∈ ∗A. So, α ∈ ∗N \ ∗A = ∗(N \ A). Since N \ A ⊆ N,
N \ A ∈ Uα. Hence Uα is an ultrafilter. Finally, if Uα were principal, then
we’d have some n0 ∈ N so that Uα = {A ⊆ N : n0 ∈ A}, and in particular
{n0} would be in Uα, which is impossible as α 6= n for any n ∈ N and
∗{n0} = {n0}. This completes the proof. �
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Alpha-Theory proves the transfer principle...

Theorem

For every bounded quantifier formula σ(x1, . . . , xk) in the language of set
theory, and for every a1, . . . , ak ,

σ(a1, . . . , ak) ⇐⇒ σ(∗a1, . . . ,
∗ak).

Proof idea: They prove that if ϕi are sequences and σ(x1, . . . , xk) is a
bounded quantifier formula, then

σ(ϕ1[α], . . . , ϕk [α]) ⇐⇒ α ∈ ∗{n : σ(ϕ1(n), . . . , ϕk(n))}.

5 But ∗aj = caj [α], where caj is the constant sequence with the value aj .
Then the following observation is made. {n : σ(ca1(n), . . . , cak (n))} is
empty if σ(a1, . . . , an) fails, and it’s N if σ(a1, . . . , ak) holds. So,
σ(a1, . . . , an) ⇐⇒ α ∈ ∗N = ∗{n : σ(ca1(n), . . . , cak (n))} ⇐⇒
σ(∗a1, . . . ,

∗ak), as cai [α] = ∗ai for each i .
5Compare with the ultrafilter Uα.
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Zermelo-Fraenkel-Boffa set theory with Choice
ZFBC...What is it???

Definition

ZFBC is the theory ZFC− + GAC + BA.

ZFC− is Zermelo-Fraenkel set theory without the axiom of foundation.

Introduce a new binary relation symbol C to the language of ZFC− so that
the axiom schemes of separation and collection apply to the formulas in
the extended language. Then GAC defines a one-to-one correspondence
between ordinals and sets. Namely,

(∀x)[x is an ordinal number =⇒ (∃!y)C (x , y)] ∧ (∀y)(∃!x)C (x , y) ∧
(∀x)(∀y)[C (x , y) =⇒ x is an ordinal number].
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ZFBC ctd...

BA, aka the axiom of superuniversality is the following.

If (A,R) is transitive in an extensional (A′,R ′), B is transitive, and
f : (A,R)→ (B,∈B) is an isomorphism, then there exist B ′ and f ′ so that
B ⊆ B ′, f ⊆ f ′, B ′ is transitive and f ′ : (A′,R ′)→ (B ′,∈B′) is an
isomorphism.

For more details see “Standard Foundations for Nonstandard Analysis” by
D. Ballard and K. Hrbacek.
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Models of the Alpha-Theory

Theorem
1 ZFBC proves the following: For each nonprincipal ultrafilter D on N,

a function JD can be defined on the class of all sequence in such a
way that the internal model MD = (V ,∈, JD) is a model of the
Alpha-Theory and MD |= “Uα = D”.

2 Let U be a countable model of ZFC and assume that

U |= “D is a nonprincipal ultrafilter on N”.

Then U is the well-founded part of some model ND
a of the

Alpha-Theory such that ND |= “Uα = D”.

aThat is U is the submodel of ND whose universe is
{x ∈ ND : ND |= “x is wellfounded” }

We will not discuss the proof of this theorem, but use it to discuss the
proofs of some other nice results.
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α-theory proves a theorem in ordinary maths iff it is true...

Consider a sentence σ in the language of set theory. Then the sentence
σWF is formed as follows.

Every quantifier ∃x . . . occurring in σ is replaced by
∃x(x is wellfounded ∧ . . .).

Every quantifier ∀x . . . is replaced by ∀x(x is wellfounded → . . .)
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α-theory proves a theorem in ordinary maths iff it is true...

Theorem

A sentence σ in the language of set theory is a theorem of ZFC iff σWF is
a theorem of the Alpha-Theory.

Proof.
Suppose ZFC 0 σ. Downward Löwenheim-Skolem says there’s a countable
model U of ZFC with U |= ¬σ. Let D be a nonprincipal ultrafilter over N
with U |= “D is a nonprincipal ultrafilter over N”. By part 2 of the
previous theorem, U is the wellfounded part of some model ND of the
Alpha-Theory. That is U is the submodel of ND whose universe is
{x ∈ ND : ND |= “x is wellfounded” }. So,
U |= ¬σ ⇐⇒ ND |= (¬σ)WF = ¬(σ)WF . Hence (Alpha-Theory) 0 σWF .

Suppose (Alpha-Theory)0 σWF . Let M be a model of the Alpha-Theory
with M |= ¬σWF . Then the wellfounded part of M is a model of ZFC
and satisfies ¬σ. Hence ZFC 0 σ. �
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An Isomorphism...

Goal: Show that ∗A ∼= AN/Uα.

Recall that we asked the question “Resemblances... Is agreeing on a “big
set” enough?”, and we had the following result.

Suppose ϕ[α] = ψ[α] and let Λ = {n : ϕ(n) = ψ(n)}. Then for all
sequences ζ and η we have
1. If ζ(n) = η(n) for all n ∈ Λ, then ζ[α] = η[α].

2. If ζ(n) ∈ η(n) for all n ∈ Λ, then ζ[α] ∈ η[α].

We’ll see now that the answer to the above question is positive, and we’ll
see what we mean by “agreeing on a big set”. Indeed, Λ is big if it’s in the
ultrafilter Uα.
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Ace of Spades...

Theorem

The Alpha-Theory proves the following. For any nonempty set A, the map
KA : ϕ(α) 7→ [ϕ] is an isomorphism from ∗A to AN/Uα.

Proof: Let ϕ,ψ be sequences. First, it’s claimed that

ϕ[α] = ψ[α] ⇐⇒ {n : ϕ(n) = ψ(n)} ∈ Uα ⇐⇒ [ϕ] = [ψ].

For let Λ = {n : ϕ(n) = ψ(n)}. Clearly if {n : ϕ(n) = ψ(n)} ∈ Uα then
ϕ[α] = ψ[α]. On the other hand, if ϕ[α] = ψ[α], then since Λ is “big” and
Λ = {n : 1N(n) ∈ Λ}, it follows that Λ ∈ Uα. Also, the second
biconditional is for free. This proves the claim. Next it’s claimed that

ϕ[α] ∈ ψ[α] ⇐⇒ {n : ϕ(n) ∈ ψ(n)} ∈ Uα.

This time we put Λ = {n : ϕ(n) ∈ ψ(n)} and repeat the above argument.�
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Cauchy’s Infinitesimal Principles...

Definition

Cauchy’s Infinitesimal Principle (CIP): Every infinitesimal number is
the value at infinity of some infinitesimal sequence.

Definition

Strong Cauchy’s Infinitesimal Principle (SCIP): Every nonzero
infinitesimal number is the value at infinity of some monotone sequence.
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The strength of the Alpha-Theory and Cauchy’s
Principles...

We are now at the heart of this exposition (what I wanted to study and
understand). The aim is to understand the proofs of the following facts.

Any theorem in “ordinary maths” is proved by the Alpha-Theory if
and only if it it “true”.

By assuming the Alpha-Theory, we cannot prove nor disprove CIP.

Assume Alpha-Theorey + CIP. Then we cannot prove nor disprove
SCIP.

Alpha-Theory + SCIP is consistent, if ZFC is consistent.
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P-points and Selective Ultrafilters...

Definition

A non-principal ultrafilter D on N is a P-point (a selective ultrafilter) if
every function on N becomes finite-to-onea or constant (1-1 or constant,
respectively) if restricted to some suitable set in D.

aThis means each preimage is finite.

Prof. Ross, N. Cutland, C. Kessler, and E. Kopp have shown that for the
existence of an ultrapower where every infinitesimal is originated by some
infinitesimal sequence requires a P-point.
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A Characterization...

Let D be a non-principal ultrafilter on N. Then,

D is a P-point iff every infinitesimal in the ultrapower RN/D is the
D-equivalence class of some infinitesimal sequence.

D is selective iff every infinitesimal in the ultrapower RN/D is the
D-equivalence class of some infinitesimal monotone sequence.
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What if Uα is a P-point or a Selective Ultrafilter?

(CIP): Every infinitesimal number is the value at infinity of some
infinitesimal sequence.

(SCIP): Every nonzero infinitesimal number is the value at infinity of some
monotone sequence.

Theorem

The Alpha-Theory proves the following:

1 CIP holds iff Uα is a P-point.

2 SCIP holds iff Uα is a selective ultrafilter.

Proof: K : φ[α] 7→ [φ] gives an isomorphism between ∗R and RN/Uα.
Now, by the previous characterization, CIP holds iff every infinitesimal in
RN/Uα is the Uα-equivalence class of some infinitesimal sequence iff Uα is
a P-point. Proof of 2 is similar.
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Ending it...

The paper ends with the next theorem. Apparently, it’s based on the
following facts about P-points and selective ultrafilters.

There are ultrafilters which are not P-points.

Selective ultrafilters exist if the continuum hypothesis is true.

P-points which are not selective ultrafilters exist given the continuum
hypothesis.

There are models of ZFC with no P-points.

649B Class Project (janitha fernando) α-theory Spring 2021 44 / 46



Ending it...

(CIP): Every infinitesimal number is the value at infinity of some
infinitesimal sequence.

(SCIP): Every nonzero infinitesimal number is the value at infinity of some
monotone sequence.

Theorem
1 Alpha-Theory does not prove CIP.

2 Alpha-Theory + CIP does not prove SCIP.

3 Alpha-Theory + SCIP is consistent, if ZFC is consistent.

Part 1 of the theorem is really a surprise (to me) because we can imagine
infinitesimals using infinitesimal sequences, but according to the theorem
there might be infinitesimals that we can’t imagine to be ideal values of
infinitesimal sequences!
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Ending it...

To do: Think (more) about the following.

1  Loś’s theorem and a “suitable ultrapower” in the proof of transfer. Is
the ultrapower V N/Uα, where V is the universe of all mathematical
objects in α-theory?

2 The actual proof of the theorem about ZFBC.

3 Does an internal definition principle for α-theory make sense? Can we
use the isomorphism ∗A ∼= AN/Uα to get one?

4 P-points and selective ultrafilters.
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